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1. Introduction

The vibrations of.a string of density p(x), length L taut by a unit

tension, are governed by the equation

u" + w 2Pu = 0, xC(O,L). (1)

It is well known that if pcC 2(0,L), this equation can be transformed into

the canonical Sturm-Liouville equation

y11 + (w2 q)y = 0.

However, even in those cases in which p is sufficiently smooth, there are

certain advantages in dealing with the problem in its original form (1),

particularly if one is interested in other vibrating problems.

In the present paper, I shall present a new approach to the solution

of the inverse problem for the vibrating string, i.e. to the reconstruction

of the density p(x) given its length L and two spectra (X }l and hin}1n 1

In order to simplify the presentation, I shall assume that the spectrum

{nP I1 is associated with (1) and the boundary conditions

u(0) = u(L) =0, (2)

i.e. the fixed/fixed configuration, while n is associated with the free/

fixed configuration:

u'(0) - u(L) - 0. (3)
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The data {A , {unI and L guarantee the uniqueness of the solution

p(x). The existence of this solution is also guaranteed if the eigen-

values pn and An (i) interlace, (ii) have the appropriate asymptotic

behavior for large order and (iii) are such that (1]

2 002 w2 <n= 1<o" V

C -"'2)  1 - --2)
khn Pk k=1 X
~nk l Ak

In addition to the above conditions, I shall assume that the data are such

that p(x) is continuous and bounded away from zero.

2. Statement of Results

Theorem 1: Let {A } be the spectrum of the eigenvalue problem
nl1

U" + W2 pu = 0

u(O) = u(L) = 0

and {pn the spectrum of
nl

•Ulf + W 2pU = 0

u'(0) = u(L) = 0

If the function p(x) is continuous and bounded away from zero, then

p(o) = 1 1n 2

n=l

Corollary: Let {A n()} 1 be the spectrum of the eigenvalue problem

Corolarz
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uf + w 2pu= 0, }
u(1) = u(L) = 0

and {fin(M)11 the spectrum of

U" + W pu = 0

u'(1) = u(L) = 0 ,

where 0 < £ < L. If p(x) is continuous and bounded away from zero for

xc(O,L), then

cc 4

= 1- 0 (x )22

(Lx 1i x n=l 1 n~l nxii x

Theorem 2: Let (Xn10, (P )0 and L be such that the solution p(x) of the

inverse problem for the vibrating string exists and is continuous and bounded

away from zero. Then, this solution is given by

-4(X)

n in
* - = 2 2 2 2

(L-x) p11 Cx) TC1x) P Wx

{x~)) ad {inx)7 ae he n=l n+l n

where {Xn(x)) and {pn(X)17 are the solutions of the initial value problems

dA (() T lAn2C(x)/Ipk 2 Cx)
2 I 1X 2 (x) (x 2 )W)dXn2 A n k

dx - L-x

U II X nl 2 x/Ak 2Cx))k~n
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di2 4TXpx)L T 11 nl2 (x)/Xk 2 W)

nT 1" 4X/k W)___ _

kin

with

2 2

Uin (0) V n

3. Proofs

Proof of Theorem 1. The given data are such as to insure the

existence and uniqueness of the solution of the inverse problem. Following

Krein [1,2], we can construct this solution by considering a converging

sequence of approximations to the integrated mass, viz.

m(X) I p(x') dx'
0

The generic Nth order approximation to m(x), say m N) (x), is a piece-wise

constant function:

m(N (x) m i. for xc4x., x .1), i=1,2,...,N (4)
j=0I

In the above formula 0o=, x =0 and xN =L. The other values of m. and

* xi, or rather
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I j-"+l xi

2 2
are found by writing the rational fraction -U (W )/U '(w where

N

Uo(2) 0L ( /2An2) (Sa)
n=1

and
N

Uo (2) = (- 2/t n 2 (Sb)
n=l

as a Stieltjes continued fraction, viz.

- U0 (2 ) .+ 1 (6)

UO'(W 2) 0 I

00It is possible to write down explicit formulas for k 0 and m . V

To that effect, we first divide -U0 ( 2) by U ' 2), viz.

-Uo(W2 1 u (2 2 (7) *.-*
0 0 01

and then U '(w by the remainder of the previous division, namely
0*

2

U0 I(2) = m 2 Ul(W2) + U,(I 2) (8)

01



6

I
Clearly

N
2

Lo7 L - (9)

n=l

The polynomial U (W ) being of degree (N-1) can be written as follows:

N-1
U1(w 2) =-(L-Lo)] (1- 2 2 (10)

n=l n

where A is the nth eigenfrequency of a string with point massesn

{m N located at {x I whose left end at x=xl-. and right end at1i2 i 2 02
x=L are held fixed. With this expression for U1(w 2) we can carry out

the division in (8) and get

N-1

2 2

l _ 1 n=l
(L-x1) N

- n 2

n=l

Now consider the ratio ml/Zo: by definition ...

1 0
m1 of N. (x)dx",

0 1

where p (N)x) is the N-th approximation to the density. If p is bounded

away from zero, then as N+w, x1 -0 and the above ratio tends to p(O).

Therefore
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N- 2 2

Lim 1 ]V nn N
(0) = iN- (L-xl)L l2  2 2 2

n=+l n n N

As N- c, x140 and consequently An - ; making use of the asymptotic form of

the eigenvalues, we can show that the resulting infinite product is con-

vergent and consequently that

n 412
P() 2 2  2 2(12)

L vi In 1 Un

n=1

By repeating the analysis for that portion of the string occupying

the segment (1,L) we could deduce that

!A 4(-

P(P) (2 () 2 () (13)
(L-Y) 2 2n~ (9n 2()

n=--1

2
Proof of Theorem 2. Let U(xw ) denote a fundamental solution of

(1) such that

U(L,w) = 0

U'(L,w2) = 1

* . ~ ,..
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Since U(xw 2) and U'(x,w2) are entire functions of 2 of order 1/2, they

can be written as follows:

UxW2 -(L-x) V (1W2 /An2W
U(x, 2) = -(-) (-/A n(x)) ,

n=l

(14)

U'(x"W2 ) = IT (l-W2/pn2(x))

n=l

The coefficients in front of the infinite products have been determined by
222

setting w equal to zero in (1). The zeros of U(x,w 2) and U'(x,w 2) are

the eigenvalues of that portion of the string occupying the interval

(x,L) and vibrating in the fixed/fixed and free/fixed configurations.

The product representations (14) must (i) be compatible and (ii)

satisfy the original equation (1). As a result, we must have

2 dx2  2
ir ( 2 /Xk2 (x)) (L-x) W n (1-ITxk 4 dk 2 Wxk=l n n kn k

k=l Pk (x)

and

4 d(1- 2

n P ~n (x%) Ilk Wx
kVn

2 2
2) x(Lx) (1- 2x)

k=l Ak2 ( x)

, ...... " ~t. .'I=, -,-
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By equating the coefficients of equal powers of w the above identities

give rise to an infinite system of linear equations for the unknowns

2 2
dX /dx}O and {d. /dxl . The solution of this infinite system can
n 1 n 1

be obtained via the theory of infinite determinants. However, there is

a simpler way of arriving at the solution. To that effect we return to

(14) and write

U(x,X 2(x) = 0 , n=l, 2,

Differentiating with respect to x, we get:

2dx 2 2

U(x,w 2) + n 2 U(x, 0

ix-n X = X (x)n

and making use of the product representations (14), we deduce that

i )L (x)

d2 x2 W 2n n Uk()dln n2(x) k=l ik2(x)

dx L-x 2(1)I) 2(x)
(1- 2 )

kn k 2 (x)

Similarly

dn2 I xn 2(x)

n P 4 (x) p(x)(L-x) kx) (16)

(1- 2
kn xk (x) 'jk W
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Or, substituting p(x) by the expression given in (13),

dn2 4(X) C A41 -V n 2 (x)/,k 2 (x))
1 n4_ _m 4 )  k= (17)

dx L-x 2 2 2 (17

m=l [ i (1-lin2(X)/k2(x))

k~n

We shall establish next that the initial value problem consisting of

(15),(17) subject to the initial conditions

A 2 (0 ) =

nn 2(n=l, 2, .. ) (18)

2 2
' n2(0) = n

has a unique solution. For convenience, we can write this initial value

problem as

dv = h(v)

v(O) = v

where the stretched coordinate F is defined thus

tn (1- .) ,f

v stands for the sequence obtained by interlacing the eigenvalues

{ 2}1  and ( , namely'
n ~ n



V2n n

(n=l, 2,

2
V2n-1 tin

and finally

Fl-An/k2)
h =f - 2 k=l

hn= f -- X 2TIAn2/k2(19a)
2n n n

IT(-A 2 /X2
kn kn

2n- nform1:b

kin

Le-sfrs-rv ta n ae of O(20foa)gve pi osecrn 4 nin n Xk

112_ P C 1b
2 2 ~ 2/

m ~mIT n kn

and

f n(An2 -n el/rn2  
. e" -Inn j lk2"2

n- n n n2 e (20)

m m+l l kfn Ok"n "
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Since

n 7 2/(pdt )
n )0

for n-*
2 22(J

i n  - (n- )ir(I p 2dt) 2

it is sufficient to show that

F = e n (e- 2 e/k 0) (21a)
nFinnI k 2_n 2

k~n

and

- n 2 -2- 2
-n(1+ 2 2 e-1/k =0(1) (21b)

kfn

As a matter of fact, we shall only show that (21a) holds; the same

arguments can be used to prove (21b). Since

2 2
AX -jI

2 2< 1 for all ktn

k n
w -A bn

we can bound F above and below:
n

A.., i

ka=...Z ... .. ' , _ . .. . " - " ' " . "_.,". ..... !' 7: . .2-. . a1,, _.,a. ' I' .... r~imnI
' ' l ' ' ' ' t ' a

.
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2 2

exp inn + I ( k 2'2 )] k F -J
n k 2 2 -n

k "n

2 2
1 1 AkIk5

k n

For large values of n, say n>N, where N denotes the subscript above which

n and Pn2 take on their asymptotic values, we can rewrite the above in-

equalities as:

n 1 N X N 2k2 -Iik2  n-l XAk2_-k 2

exp ( -nn) + 2 2 +  1 2 2
1 xn lk N+l X n -k

4n2 1 xk2-Pk2 A 2 k 21 A~1i - k- 'k
+ (k 2 2 +  k 2_ ] F n
n+l Ik n 4n2+1 Il-k n

nN Xk2-1k n-I Xk2-1k[C __In) k 1k n Ak 'k
exp inn) + . +

I x 2k 2  N+ Xn 2-Xk

4n2  2 2 1 kk

+ ( 2 2 + 2n+l x-A 2 I -A
k n 4n +1 k n

Now

O(n-2
1

- - I.•,. •
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n-i
= tnn + o(1)

N+l 2

2
4n 1

n+l

o. = (1) !
4n2+I

where we have used the sigma sign as a shorthand notation for the various

sums entering in the exponents. Therefore,

F ey  as n-*

where y is Euler's constant.

The next step consists in introducing the sequence space S where

S ( vnl IlvIl = 1 4 c (2

as well as the supspace S C S of sequences which (i) are positive (ii) are

increasing and (iii) satisfy the asymptotic relation

n 7r as n- (23)
41

where I is a constant. Clearly, sequences obtained by interlacing two

spectra lie in S*. Also, h can be thought of as a map of S* in S.

.........

* .- ~--.--.-- -



The spaces S and S' are convex: indeed, if o,neS*, then

ao+(l-o)rieS* where O<a<l. More importantly, the functions h (cia +
n

(1-c)n) , n=l, 2, ... are analytic functions of a for ae[O,l]. Con-

sequently, for every n there exists a value an such thatn

dh n

h n(a) - h n(n) d 
'=1n

or equivalently

3h
hn(a) -h n(n) = 2 I (a2m-n2m)

m n

ah

n

2  (a 2m-l-n 2m-1)

m 
n

We should remark at this stage that on account of the asymptotic form of

hn, the ans become independent of n, or more precisely

2n e

as n--

C2n-1 % 0o

22
Referring to (19), we can deduce explicit formulas for ah /e 2 and

hn/ 2. As a result n m

I ___ _____
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)(2n) (2n) 0 2m -2m
2n 2n n n min (2n) 2 (x(2n) 2 -x (2n) 2

m m n

2 f 2n) (2
n (2n)2  k P (2n) 2 (2n)2  kin Aj2n) 2x(2n)

n k n k n

(2n) 2 f( 2 n) a -2m-1 - '2m-1 (24a)
+ Xn  n m (2n) 2((p2(2n)2-2n)2

m m n

where

2
x(2n) 2 (1-a
m 2n 02m +  2n 2m

(2n) 2 + (i-a )n
m a2n 

02m-1 2n 2m-1

and

f( 2 n ) = h2  (a 2n° + (1-2

Similarly

h (a)2n- = 2m(2n -1) 2n
nm (2n 1) 2 ( (2n ) 2 (2n ) 2 )

m -m -n

(2n-l) 2 (2n-1) a 02m-1 n2m-1
n nmn I(2n-1) 2( (2n-) 2_. (2n-1) 2

m m n
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+ (2n-1) {2m-n2m a 2m-1 -2m-1
n 2 211 (2n-1) (2n-1) J

Xm Vm.

(24b)

2 1
(2n-1) k (2n-1) (2n-1) + kn (2n-1)2  (2n-1)2n-l- 2n 1)n k -fn lk - n

Because of the asymptotic form of fn and gn we can assume that hn (O)-h n(n)

is positive for n>2N, by interchanging if need be a and n. Dividing (24a)

by (2n)4 and (24b) by (2n-1)4 and summing over n, we can see that

h n h(a) -h n (n)I nh <const. Ila-nl

or, in view of the previous remark

2N Ih (a)-hn(n) 2N h (a)-h (n)

]]h(n)-h(n)II - { X 4n n
1 n L n

< const. Ila-nill (25)

In order to derive the above inequality, we have made use of the fact that

the dependence of the various quantities on an can be ignored for large n's

and that the sums

1_ _ I. 1 1

L 2 2 ' 2 2 2 2' 2 2
nom n m n Am n p n  m nom Un -Vm

: " i ": ''< ... 7
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are of O(m 2). Noting that (24a) and (24b) imply that

Ihn(O)-hn(n)j < const. Ila-nil (26)

we therefore conclude that

I lh(a) - h(n)11 <const. I Io-nl1 (27)

This Lipschitz condition guarantees the existence of a unique solution

to the initial value probi-A.

4. The Quasi-homogeneous String

This paragraph examines what happens to formula (13) for the case

of a quasi-homogeneous string, i.e. for a string whose density is:

p = p [1 + cr(x)] (28)

where £<<l. Making use of perturbation theory, one can easily show that

22 1 2

2(L) = n [ (2
An M 2 [1 + £(-ro +- r 2n) + O( ] (28a)

(L-)o.

and

un2 ( = (n r [i - c(r + r2 l) * 0(€2)] + (28b)
n(LL2 0 ,

where

L

r, L 1 J r(x)dx ,(29)
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and

L

rn = r(x) cos nlr- dx (30)

Therefore

n4 n4  21I
2 [1 + c(r + 0C2]-C(1n2 ( (n 2 r2n -r2n+l 2 rn-1)

n+1  n

and consequently

T n r 2n+l+r2n-1=IT 2 [I [1 e + n+ 0(2(n2(2-n2 )2  ( r2 n

n=1 in+l ) n=l n ) n(l

2 r O
4 {I+--+ r + 0(2)K2 n=l

Hence

4 +() (- +  r n ) + 0(:
(Lt)2 2(2 n 2CZ) = )

(n+l) 2 1 -1 (r + rl + OC2 )

,n ((2)31)

0

Thus, for the simple case of the quasi-homogeneous string, formula (13)

reduces to an end-point evaluation of the Fourier cosine series for r(x).

Indeed, from the representation

* , -,
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r(x) =r + r cos n r--

it is obvious that

p(l) = p [1 + e rn]
0

5. Concluding Remarks

The derivation of p(O) via the computation of X and mI can beo

thought of as involving a process in which the frequency w tends to infinity.

Had we started with a time dependent formulation of the problem, this

process would have been associated with letting the time t tend to zero.

In that sense, the method is reminiscent of that of Kac [3], Deift &

Trubowitz [4] and Trubowitz [5]. A similar approach can also be used for

solving the canonical Sturm-Liouville problem: in this case q(x) is expressed

via a trace formula such as the ones given in [6,7,8]. However, the results

are not as explicit as in the present case.

Finally, we have restricted our analysis to the boundary conditions

(2) and (3). If these boundary conditions are replaced by the following

ones:

u(O) = u(L) cosy + u'(L)siny = 0 (1')

and

u(O) cosa - u'(0) sin$ = u(L) cosy + u'(L) siny = 0 (2')

where 0 < < w/2 and 0 < y < w/2, then the expressions for 1° and m

change slightly (see [9]) and as a result formula (13) becomes:

m 4

p(X) n

sin2 a (L-x)2 j 12(x)T P2  (x) 2
n= n+l (x)A

J..f
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